UL File No.: E122222 CSA File No.: LR39291

8 Pin type

11 Pin type Screw terminal type

Features

1. Wide time range

The operation time range covers from 0.01 sec . to 999 hours.

The individual setting can be performed on each of the timers.
99.99s 99min59s 99h59min
999.9s 999min 999.9h

9999s 9999h
2. Bright and Easy-to-Read Display

A brand new bright 2-color back-lit LCD display. The screen is easy-to-read in any location, makes checking and setting procedures a cinch.

3. Simple Operation

Seesaw buttons make setting and operation simple and easy.
4. Short Body of only 64.5 mm 2.54
inch (screw terminal type) or $\mathbf{7 0 . 1} \mathbf{~ m m}$ 2.76 inch (pin type)

With a short body, it is easy to install even in shallow control panels.

5. Conforms to IP66's Weather Resistant Standards

The water-proof front panel keeps out water and dirt for reliable operation even in poor environments.

6. Screw terminal and Pin Type are

 Both StandardThe two terminal types are standard to support either through-panel installation or embedded installation.
7. Changeable Panel Cover

A black panel cover is also available to meet your design requirements.

8. Conforms With EMC and Low

 Voltage DirectivesConforms with EMC directives
(EN50081-2/EN50082-2) and low-voltage directives (VDE0435/Part 2021) for CE certification vital for use in Europe.
9. EE-PROM Power Failure Memory EE-PROM memory retains setting and time data. Eliminates the need for battery replacement.

Product types

Time range	Operation mode	Output	Operation voltage	Power down insurance	Terminal	Part No.

Part names

Specifications

Item			Ralay output type		Transistor output type	
			AC type	DC type	AC type	DC type
Rating	Operating voltage		100 to 240 V AC / 24 V AC	12 to 24 V DC	100 to 240 V AC	12 to 24 V DC
	Frequency		$50 / 60 \mathrm{~Hz}$ common	-	$50 / 60 \mathrm{~Hz}$ common	-
	Power consumption		Max. 10 V A	Max. 3 W	Max. 10 V A	Max. 3 W
	Control capacity (resistive)		5 A, 250 V AC		$100 \mathrm{~mA}, 30 \mathrm{~V}$ DC	
	Time range		99.99s, 999.9s, 9999s, 99min59s, 999.9min, 99h59min, 999.9h, 9999h (selected by DIP switch)			
	Time counting direction		Addition (UP)/Subtraction (DOWN) (2 directions selectable by DIP switch)			
	Operation mode		Pulse input: Delayed one shot, OFF-start flicker or ON-start flicker Integrating input: Delayed one shot, OFF-start flicker or ON-start flicker			
	Signal, Reset, Stop input		Min. input signal width: $1 \mathrm{~ms}, 20 \mathrm{~ms}$ (2 directions by selected by DIP switch)			
	Lock input		Min. input signal width: 20 ms			
	Input signal		Open collector input Input impedance: Max. $1 \mathrm{k} \Omega$; Residual voltage: Max. 2 V Open impedance: $100 \mathrm{k} \Omega$ or less, Max. energized voltage: 40 V DC			
	Indication		7-segment LCD, Elapsed value (backlight red LED), Setting value (backlight yellow LED)			
	Power failure memory method		EE-PROM (Min. 10^{5} overwriting)			
Time accuracy (max.)	Operating time fluctuation		$\pm(0.005 \%+50 \mathrm{~ms})$ in case of power on start $\pm(0.005 \%+20 \mathrm{~ms})$ in case of reset or input signal start (at fixed power off time)			
	Temperature error					
	Voltage error					
	Setting error					
Contact	Contact arrangement		Timed-out 1 Form C		Timed-out 1 Form A (Open collector)	
	Initial contact resistance		$100 \mathrm{~m} \Omega$ (at 1 A 6 V DC)		-	
	Contact material		Ag alloy/Au flash		-	
Life	Mechanical		2.0×10^{7} ope. (Except for switch operation parts)		-	
	Electrical		1.0×10^{5} ope. (At rated control voltage)		1.0×10^{7} ope. (At rated control voltage)	
Electrical	Operating voltage range		85 to 110% of rated operating voltage			
	Initial breakdown voltage		2,000 Vrms for 1 min : Between live and dead metal parts 2,000 Vrms for 1 min : Between input and output 1,000 Vrms for 1 min : Between contacts		2,000 Vrms for 1 min : Between live and dead metal parts 2,000 Vrms for 1 min : Between input and output	
	Initial insulation resistance (At 500 V DC)		Between live and dead metal parts Min. $100 \mathrm{M} \Omega$: Between input and output Between contacts		Min. $100 \mathrm{M} \Omega$: Between live and dead metal parts Between input and output	
	Operating voltage reset time		Max. 0.5 s			
	Temperature rise		Max $65{ }^{\circ} \mathrm{C}$ (under the flow of nominal operating current at nominal voltage)			
Mechanical	Vibration resistance	Functional	10 to $55 \mathrm{~Hz}: 1 \mathrm{cycle} / \mathrm{min}$ single amplitude of 0.35 mm .014 inch (10 min on 3 axes)			
		Destructive	10 to 55 Hz : $1 \mathrm{cycle} / \mathrm{min}$ single amplitude of 0.75 mm .030 inch (1 h on 3 axes)			
	Shock resistance	Functional	Min. $98 \mathrm{~m} 321.522 \mathrm{ft} / \mathrm{s}^{2}$ (4 times on 3 axes)			
		Destructive	Min. $294 \mathrm{~m} 964.567 \mathrm{ft} / \mathrm{s}^{2}$ (5 times on 3 axes)			
Operating conditions	Ambient temperature		$-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}+14^{\circ} \mathrm{F}$ to $+131^{\circ} \mathrm{F}$			
	Ambient humidity		Max. 85 \% RH			
	Air pressure		860 to 1,060 h Pa			
	Ripple rate		-	20 \% or less	-	20 \% or less
Connection			8-pin/11-pin/screw terminal			
Protective construction			IP66 (front panel with rubber gasket)			

Screw-down terminal type (through-panel installation)

Pin type (through-panel or
surface mount installation)

- Dimensions for through-panel installation (with adapter installed) Screw-down terminal type Pin type

- Dimensions for surface mount installations - Installation panel cut-out dimensions

- For connected installations

The standard panel cut-out dimensions are shown below. Use the installation frame (ATA4811) and rubber gasket (ATC18002).

When n timers are continuously installed, the dimension
(A) is calculated according to the following formula (n : the number of the timers to be installed):
$A=(48 \times n-2.5)_{0}^{+0.6} \quad A=(1.890 \times n-.098)^{+.024}$

Note 1: The installation panel thickness should be between 1 and 5 mm .039 and .197 inch.
Note 2: For connected installations, the waterproofing ability between the unit and installation panel is lost.

Terminal layout and wiring

- 8-Pin type

Relay output type

Transistor output type

- 11-Pin type

Relay output type

Transistor output type

- Screw terminal type

Relay output type

Transistor output type

Setting the operation mode, timer range, and time

Setting procedure 1) Setting the operation mode and timer range (Timer $\mathrm{T}_{1} /$ Timer T_{2})

Set the operation mode and timer range with the DIP switches on the side of the unit.

DIP switches

Note: Set the DIP switches before installing the unit.

	Item	DIP switch	
		OFF	ON
1	Operation mode	Refer to table 1	
2			
3			
4	Minimum input reset, signal, and stop signal width	20 ms	1 ms
5	Time delay direction	Addition	Subtraction
6	Timer range	Refer to table 2	
7			
8			

* The 8-pin type does not have the stop input, so that the dip switch can be changed over between reset and signal inputs The signal range of the lock input is fixed (minimum 20 ms).

Table 1: Setting the timer range (Timer T_{1})

DIP switch No.			Timer range	
1	2	3		
ON	ON	ON	0.01 s to 99.99 s	
OFF	OFF	OFF	0.1 s to 999.9 s	
ON	OFF	OFF	1 s to 9999 s	
OFF	ON	OFF	0 min 01 s to 99 min 59 s	
ON	ON	OFF	0.1 min to 999.9 min	
OFF	OFF	ON	0 h 01 min to 99 h 59 min	
ON	OFF	ON	0.1 h to 999.9 h	
OFF	ON	ON	1 h to 9999 h	

Table 2: Setting the timer range (Timer T_{2})

DIP switch No.			Timer range	
6	7	8		
ON	ON	ON	0.01 s to 99.99 s	
OFF	OFF	OFF	0.1 s to 999.9 s	
ON	OFF	OFF	1 s to 9999 s	
OFF	ON	OFF	0 min 01 s to 99 min 59 s	
ON	ON	OFF	0.1 min to 999.9 min	
OFF	OFF	ON	0 h 01 min to 99 h 59 min	
ON	OFF	ON	0.1 h to 999.9 h	
OFF	ON	ON	1 h to 9999 h	

Setting procedure 2) Setting the time

Set the set time with the keys on the front of the unit.

Front display section

1) Elapsed time display
(2) Set time display
2) T_{1} / T_{2} operation indicator
3) T_{1} / T_{2} setting value selectable indicator
(5) Controlled output indicator
6 Lock indicator
(7) Time units display

(8) UP keys

Changes the corresponding digit of the set time in the addition direction (upwards)
(9) DOWN keys

Changes the corresponding digit of the set time in the subtraction
direction (downwards)
(10) RESET switch

Resets the elapsed time and the output
(11) Set/lock switch

Changes over the display between T_{1} / T_{2} settings, sets the operational mode, checks the operational mode and locks the operation of each key (such as up, down or reset key).

1) Setting or changing the operational mode
1. When the UP or DOWN key at the first digit is pressed with the set/lock switch pressed, the mode is changed over to the setting mode.

Ex: Setting mode display

2. The operational mode in the setting mode is changed over sequentially in the left or right direction by pressing the up or down key at the first digit, respectively.

3. The operational mode displayed at present is set by pressing the RESET key, and the display returns to the normal condition.

2) Checking the operational mode

When the UP or DOWN key at the second digit is pressed with the set/lock switch pressed, the operational mode can be checked.
The display returns to the normal condition after indicating the operational mode for about two seconds. (While the display indicates the operational mode for about two seconds, the other indicators continue to operate normally.)

3) Setting the lock

When the UP or DOWN key at the fourth digit is pressed with the set/lock switch pressed, all keys on the unit are locked.
The timer does not accept any of UP, DOWN and RESET keys.
To release the lock setting, press the UP or DOWN key at the fourth digit again with the set/lock switch pressed.

* Operational mode, adding and subtracting and minimum input signal range cannot be set at T_{1} and T_{2}, respectively.

4) Changing over the T_{1} / T_{2} setting display

The T1/T2 setting display is changed over by pressing the SET/LOCK switch. (This operation gives no effect on the other operations. The set time and elapsed time (residual time) at T_{1} are linked with those at T_{2}.)

- Changing the set time

1. It is possible to change the set time with the up and down keys even during time delay with the timer. However, be aware of the following points.
1) If the set time is changed to less than the elapsed time with the time delay set to the addition direction, time delay will continue until the elapsed time reaches full scale, returns to zero, and then reaches the new set time. If the set time is changed to a time above the elapsed time, the time delay will continue until the elapsed time reaches the new set time.
2) If the time delay is set to the subtraction direction, time delay will continue until "0" regardless of the new set time.
2. When the set times at T_{1} and T_{2} are set to 0 , the output becomes $O N$ only while the signal input is carried out. However, while the reset input is carried out, the output becomes OFF.

	PULSE : Pulse input	INTEGRATION: Integrating input
one sho	PULSE A OFF-start/1 operation $t_{1}<T_{1}, t_{2}<T_{2}$ - When the power is turned on, the timer value is cleared. - Timing operation will start when the signal becomes ON, and the signal input is ignored during timing operation. - The timer value is cleared after one operation.	INTEGRATION A OFF-start/1 operation $t_{1}<T_{1}, t_{2}<T_{2}$ - When the power is turned on, the timer value is not cleared. (Power failure compensation function) - The control output is held even if the power is turned off and turned on again. - After one operation, the elapsed value is cleared.
OFF-start flicker	PULSE B OFF-start/repeating operation $t_{1}<T_{1}, t_{2}<T_{2}$ - When the power is turned on, the timer value is cleared. - Timing operation will start when the signal becomes ON, and the signal input is ignored during timing operation.	INTEGRATION B OFF-start/repeating operation $t_{1}<T_{1}$, $\mathrm{t}_{2}<\mathrm{T}_{2}$ - When the power is turned on, the timer value is not cleared. (Power failure compensation function) - The control output is held even if the power is turned off and turned on again.
ON-start flicker	PULSE C ON-start/repeating operation $\mathrm{t}_{1}<\mathrm{T}_{1}, \mathrm{t}_{2}<\mathrm{T}_{2}$ - When the power is turned on, the timer value is cleared. - Timing operation will start when the signal becomes ON, and the signal input is ignored during timing operation.	C ON-start/repeating operation $\mathrm{t}_{1}<T_{1}$, $\mathrm{t}_{2}<\mathrm{T}_{2}$ - When the power is turned on, the timer value is not cleared. (Power failure compensation function) - The control output is held even if the power is turned off and turned on again.
Remarks and notes	- The pulse input mode starts the operation when the signal input turns on. - For power-on start operation jumper the signal terminal (8-pin: (1) to (4), 11-pin: (3) to (6) and screw: 6 to (9).	- The integrating input mode is controlled by the total on-time of the signal input. - When the elapsed value is cleared by the reset input, the output is reset. - For power-on start operation jumper the signal terminal (8-pin: (1) to (4), 11-pin: (3) to (6) and screw: 6 to 9).

- Each signal input such as signal, reset, stop and lock inputs is applied by a contact closure between the input terminal and common terminal (8-pin type: terminal (1), 11-pin type: terminal (3) and screw terminal: terminal 6) respectively.
- The 8-pin type has no step mode.

DIN SIZE TIMERS COMMON OPTIONS

TERMINAL SOCKETS (Unit: mm inch, Tolerance: $\pm 1 \pm .039$)

Type	Appearance	Dimensions	Terminal wiring (Top view)	Mounting hole dimensions
$\begin{gathered} \text { LT4H } \\ \text { LT4H-W } \\ \text { (8-pin type) } \end{gathered}$	- DIN rail socket (8-pin) ATC18003		Note: Terminal No. on the main body are identifical to those on the terminal socket.	
$\begin{gathered} \text { LT4H } \\ \text { LT4H-W } \\ \text { (11-pin type) } \end{gathered}$	- DIN rail socket (11-pin) ATC18004		Note: Terminal No. on the main body are identifical to those on the terminal socket.	

Note: The socket's numbering system matches that of the timer terminals.

SOCKETS (Unit: mm inch, Tolerance: $\pm 1 \pm .039$)

Type	Appearance	Dimensions	Terminal wiring (Top view)	Mounting hole dimensions
$\begin{gathered} \text { LT4H } \\ \text { LT4H-W } \\ \text { (8-pin type) } \end{gathered}$	- Rear terminal socket			-
				-
$\begin{gathered} \text { LT4H } \\ \text { LT4H-W } \\ \text { (11-pin type) } \end{gathered}$				-

[^0]
Mounting parts

ACCESSORIES

LT4H series

- Panel cover (Black)
LT4H

LT4H-W

ATL68011

The black panel cover is also available so that you can change the appearance of the panel by changing the panel cover. The color of the standard panel cover is ash gray.

[^0]: Note: The terminal socket's numbering system matches that of the timer terminals

